
ŠKOLSKO NATJECANJE IZ MATEMATIKE
1. razred – srednja škola – A varijanta

26. siječnja 2026.

AKO UČENIK IMA DRUKČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO
TREBA I TAJ POSTUPAK BODOVATI I OCIJENITI NA ODGOVARAJUĆI NAČIN.

Zadatak A-1.1.
Izračunaj

2 · 20273 + 20253

22 + 2027 · 2025 − 4052 · 20273 − 20253

40522 − 2027 · 2025 .

Prvo rješenje.
Faktoriziranjem brojnika dobijemo

2 · 20273 + 20253

22 + 2027 · 2025 − 4052 · 20273 − 20253

40522 − 2027 · 2025

= 2 · (2027 + 2025)(20272 − 2027 · 2025 + 20252)
22 + 2027 · 2025 −

−4052 · (2027 − 2025)(20272 + 2027 · 2025 + 20252)
40522 − 2027 · 2025 . 2 boda

Primijetimo prvo da je 2 = 2027 − 2025 i 4052 = 2027 + 2025. Stoga je

= 2 · (2027 + 2025)(20272 − 2027 · 2025 + 20252)
(2027 − 2025)2 + 2027 · 2025 −

−4052 · (2027 − 2025)(20272 + 2027 · 2025 + 20252)
(2027 + 2025)2 − 2027 · 2025 . 2 boda

Raspisivanjem nazivnika imamo

= 2 · (2027 + 2025)(20272 − 2027 · 2025 + 20252)
20272 − 2027 · 2025 + 20252 −

−4052 · (2027 − 2025)(20272 + 2027 · 2025 + 20252)
20272 + 2027 · 2025 + 20252 , 1 bod

te konačno

= 2 · (2027 + 2025) − 4052 · (2027 − 2025) = 2 · 4052 − 4052 · 2 = 0 1 bod
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Drugo rješenje.
Brojnike možemo faktorizirati

20273 + 20253 = (2027 + 2025) · (20272 − 2027 · 2025 + 20252) 1 bod
20273 − 20253 = (2027 − 2025) · (20272 + 2027 · 2025 + 20252) 1 bod.

S druge strane, nazivnike možemo zapisati kao

22 + 2027 · 2025 = (2027 − 2025)2 + 2027 · 2025 = 20272 − 2027 · 2025 + 20252 2 boda
40522 − 2027 · 2025 = (2027 + 2025)2 − 2027 · 2025 = 20272 + 2027 · 2025 + 20252 1 bod.

Konačno, vidimo da je

2 · 20273 + 20253

22 + 2027 · 2025 − 4052 · 20273 − 20253

40522 − 2027 · 2025
= 2 · (2027 + 2025) − 4052 · (2027 − 2025)
= 2 · 4052 − 4052 · 2 = 0 1 bod.

Treće rješenje.
Računamo

20273 + 20253 = 16632159308, 22 + 2027 · 2025 = 4104679. 1 bod

Stoga je
20273 + 20253

22 + 2027 · 2025 = 16632159308
4104679 = 4052. 2 boda

Slično imamo

20273 − 20253 = 24628058, 40522 − 2027 · 2025 = 12314029, 1 bod
odnosno

20273 − 20253

40522 − 2027 · 2025 = 24628058
12314029 = 2. 1 bod

Konačno

2 · 20273 + 20253

22 + 2027 · 2025 − 4052 · 20273 − 20253

40522 − 2027 · 2025 = 2 · 4052 − 4052 · 2 = 0. 1 bod

Napomena: U drugom rješenju, sređivanje jednog nazivnika nosi 2 boda, neovisno o
kojem se nazivniku radi, a sređivanje drugog nosi još 1 bod.

Zadatak A-1.2.
Neka je 𝐴𝐵𝐶 pravokutni trokut s katetama duljina |𝐴𝐶| = 4 i |𝐵𝐶| = 3. Neka je 𝐷
točka na hipotenuzi 𝐴𝐵 takva da trokuti 𝐴𝐷𝐶 i 𝐵𝐶𝐷 imaju jednake opsege. Koliko
iznosi površina trokuta 𝐵𝐶𝐷?

Školsko natjecanje iz matematike 2026. 2/31



Prvo rješenje.
Odredimo prvo duljinu hipotenuze 𝐴𝐵. Prema Pitagorinom poučku ona iznosi

|𝐴𝐵| =
√

|𝐵𝐶|2 + |𝐴𝐶|2 =
√

32 + 42 = 5. 1 bod

Iz uvjeta jednakosti opsega trokuti 𝐴𝐷𝐶 i 𝐵𝐶𝐷 dobivamo sljedeću jednakost:

|𝐶𝐴| + |𝐴𝐷| + |𝐷𝐶| = |𝐶𝐷| + |𝐷𝐵| + |𝐵𝐶|.

Nakon oduzimanja |𝐶𝐷|, uvrštavanja poznatih vrijednosti i sređivanja prethodne jed-
nakosti dobivamo

1 + |𝐴𝐷| = |𝐵𝐷|. 1 bod
Uz jednakost |𝐴𝐷| + |𝐷𝐵| = |𝐴𝐵| = 5 dobijemo |𝐷𝐵| = 3. 1 bod

4 3h

2 3A B

C

D

Trokuti 𝐴𝐷𝐶 i 𝐷𝐵𝐶 imaju zajedničku visinu ℎ te je stoga

𝑃 (𝐵𝐶𝐷) : 𝑃 (𝐴𝐵𝐶) = ℎ · |𝐷𝐵|
2 : ℎ · |𝐴𝐵|

2 = |𝐷𝐵| : |𝐴𝐵| = 3 : 5. 2 boda

Konačno je
𝑃 (𝐵𝐶𝐷) = 3

5𝑃 (𝐴𝐵𝐶) = 3
5 · 3 · 4

2 = 18
5 . 1 bod

Drugo rješenje.
Kao u prvom rješenju dobijemo da je |𝐴𝐵| = 5 i |𝐷𝐵| = 3. 3 boda
Iz dva načina za računanje površine trokuta 𝐴𝐵𝐶 znamo da je

|𝐵𝐶| · |𝐶𝐴|
2 = |𝐴𝐵| · ℎ

2 , 1 bod

odnosno
ℎ = 12

5 . 1 bod

Sada vidimo da je površina trokuta 𝐵𝐶𝐷 jednaka
|𝐵𝐷| · ℎ

2 = 18
5 . 1 bod
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Zadatak A-1.3.
Neka su 𝑎, 𝑏, 𝑐 i 𝑑 realni brojevi takvi da vrijedi 𝑎𝑏𝑐𝑑 ̸= 0 i da je

𝑎 = 𝑏 − 𝑐, 𝑏 = 𝑐 − 𝑑, 𝑐 = 𝑑 − 𝑎.

Odredi vrijednost izraza
𝑎

𝑏
+ 𝑏

𝑐
+ 𝑐

𝑑
+ 𝑑

𝑎
.

Rješenje.
Budući da vrijedi

𝑎 = 𝑏 − 𝑐 = (𝑐 − 𝑑) − 𝑐 = −𝑑 2 boda
𝑏 = 𝑐 − 𝑑 = (𝑑 − 𝑎) − 𝑑 = −𝑎 = 𝑑 1 bod
𝑐 = 𝑑 − 𝑎 = 𝑑 − (−𝑑) = 2𝑑, 1 bod

možemo zaključiti

𝑎

𝑏
+ 𝑏

𝑐
+ 𝑐

𝑑
+ 𝑑

𝑎
= −𝑑

𝑑
+ 𝑑

2𝑑
+ 2𝑑

𝑑
+ 𝑑

−𝑑
= 1

2 . 2 boda

Napomena: Analogno ovom rješenju, bilo koja tri od dana četiri broja se mogu izraziti
preko četvrtog. Za prvi takav izračun se dodjeljuje 2 boda te se za svaki od preostala
dva dodjeljuje po 1 bod.

Zadatak A-1.4.
Odredi sve prirodne brojeve 𝑛 takve da je broj 𝑛2 + 1 djeljiv brojem 𝑛 + 13.

Rješenje.

Tražimo sve prirodne brojeve 𝑛 takve da je 𝑛2 + 1
𝑛 + 13 cijeli broj. Budući da je

𝑛2 + 1
𝑛 + 13 = 𝑛2 − 169 + 170

𝑛 + 13 = (𝑛 + 13)(𝑛 − 13) + 170
𝑛 + 13 = 𝑛 − 13 + 170

𝑛 + 13 , 2 boda

zaključujemo da 𝑛 + 13 mora biti pozitivan djelitelj broja 170. 1 bod
Pozitivni djelitelji broja 170 su i 1, 2, 5, 10, 17, 34, 85 i 170. 1 bod
Budući da je 𝑛 + 13 ⩾ 14, zaključujemo da je 𝑛 + 13 ∈ {17, 34, 85, 170}. 1 bod
Dakle, prirodni brojevi koji zadovoljavaju uvjet zadatka su 4, 21, 72 i 157. 1 bod
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Zadatak A-1.5.
Spremajući se za natjecanje iz matematike, Marta je u pet dana riješila ukupno 31
zadatak. Svakog je dana riješila više zadataka nego prethodnog, a petog je dana riješila
točno tri puta više zadataka nego prvog. Koliko je zadataka mogla riješiti četvrtog
dana?

Rješenje.
Neka je 𝑎 broj zadataka koje je Marta riješila prvi dan.
Ukupno je riješila barem 𝑎 + (𝑎 + 1) + (𝑎 + 2) + (𝑎 + 3) + 3𝑎 = 7𝑎 + 6 zadataka pa je
7𝑎 + 6 ⩽ 31, odnosno 𝑎 ⩽ 3. 1 bod
Budući da Marta riješila nije riješila više od 𝑎+(3𝑎−3)+(3𝑎−2)+(3𝑎−1)+3𝑎 = 13𝑎−6
zadataka, zaključujemo da je 𝑎 ⩾ 3. 1 bod
Dakle, Marta je riješila redom 3, 𝑥, 𝑦, 𝑧 i 9 zadataka. 1 bod
Ako bi 𝑧 bilo manje od 8, onda bi za ukupan broj riješenih zadataka vrijedilo

3 + 𝑥 + 𝑦 + 𝑧 + 9 ⩽ 3 + (𝑧 − 2) + (𝑧 − 1) + 𝑧 + 9 = 3𝑧 + 9 ⩽ 3 · 7 + 9 = 30,

što nas dovodi do kontradikcije 2 boda.
Vidimo da je Marta redom mogla riješiti po 3, 5, 6, 8 i 9 zadataka pa zaključujemo da
je Marta četvrti dan riješila 8 zadataka 1 bod.

Zadatak A-1.6.
Odredi sve parove (𝑎, 𝑏) prirodnih brojeva za koje vrijedi 𝑎2 = 𝑏(𝑏 + 7).

Prvo rješenje.
Iz uvjeta zadatka slijedi

𝑎2 − 𝑏2 = 7𝑏,

odnosno
(𝑎 − 𝑏)(𝑎 + 𝑏) = 7𝑏. 1 bod

Budući da je 𝑎 > 𝑏, imamo 𝑎 + 𝑏 > 2𝑏. 1 bod
Iz toga slijedi da je

𝑎 − 𝑏 = 7𝑏

𝑎 + 𝑏
<

7𝑏

2𝑏
= 3.5.

Dakle, 𝑎 ⩽ 𝑏 + 3. 2 boda
Ako je 𝑎 = 𝑏+1, 2 bodaslijedi da je (𝑎−𝑏)(𝑎+𝑏) = 2𝑏+1 < 7𝑏, što nas dovodi do kontradikcije.
Ako je 𝑎 = 𝑏 + 2, 2 bodaslijedi da je (𝑎 − 𝑏)(𝑎 + 𝑏) = 4𝑏 + 4 = 7𝑏, pa je 3𝑏 = 4, što nas dovodi
do kontradikcije.
Ako je 𝑎 = 𝑏 + 3, 2 bodaslijedi da je (𝑎 − 𝑏)(𝑎 + 𝑏) = 6𝑏 + 9 = 7𝑏, odnosno 𝑏 = 9 i 𝑎 = 12.
Zaključujemo da je jedino rješenje (𝑎, 𝑏) = (12, 9).
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Drugo rješenje.
Najveći zajednički djelitelj brojeva 𝑏 i 𝑏 + 7 jednak je 1 ili 7. 2 boda
Ako je najveći zajednički djelitelj od 𝑏 i 𝑏+7 jednak 1, tada 𝑏 i 𝑏+7 moraju biti potpuni
kvadrati. 2 boda
Neka je 𝑏 = 𝑚2 i 𝑏 + 7 = 𝑛2 za neke prirodne brojeve 𝑚 i 𝑛. Tada je

7 = 𝑛2 − 𝑚2 = (𝑛 + 𝑚)(𝑛 − 𝑚),

iz čega zaključujemo 𝑛 + 𝑚 = 7, 𝑛 − 𝑚 = 1. Dakle, 𝑚 = 3, 𝑛 = 4, odnosno 𝑏 = 9 i
𝑎 = 12. 2 boda
Ako je najveći zajednički djelitelj od 𝑏 i 𝑏 + 7 jednak 7, tada postoje prirodni brojevi
𝑘 i ℓ takvi da je 𝑏 = 7𝑘2 i 𝑏 + 7 = 7ℓ2. 2 boda
Tada je 7 = 𝑎2 − 𝑏2 = 7ℓ2 − 7𝑘2, odnosno 1 = (ℓ + 𝑘)(ℓ − 𝑘). Zaključujemo da u ovom
slučaju mora biti 𝑘 = 0, ℓ = 1 te 𝑏 = 0, što što nas dovodi do kontradikcije. 2 boda
Dakle, jedino rješenje je (𝑎, 𝑏) = (12, 9).

Treće rješenje.
Kada je 𝑏 ⩾ 2, znamo da je

(𝑏 + 2)2 = 𝑏2 + 4𝑏 + 4 < 𝑏2 + 7𝑏 < 𝑏2 + 8𝑏 + 16 = (𝑏 + 4)2. 2 boda

Kako je 𝑏2 + 7𝑏 = 𝑏(𝑏 + 7) = 𝑎2, zaključujemo da je nužno 𝑎 = 𝑏 + 3. 1 bod
Kao u prvom rješenju, jedino rješenje za koje je 𝑎 = 𝑏 + 3 je (𝑎, 𝑏) = (12, 9). 2 boda
Preostaje se uvjeriti da nema rješenja kada je 𝑏 = 1.
Doista, u tom slučaju je 𝑏(𝑏 + 7) = 8, što nije potpuni kvadrat. 1 bod
Zaključujemo da je jedino rješenje (𝑎, 𝑏) = (12, 9).
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Zadatak A-1.7.
U svako polje tablice 5 × 5 upisan je po jedan cijeli broj pri čemu se u pojedinom retku
ili stupcu isti broj nalazi najviše tri puta. Razlika bilo koja dva broja u istom retku
ili stupcu iznosi najviše 2. U tablici se nalazi broj 0, ali ne i broj 4. Odredi najveći
mogući zbroj svih brojeva u tablici.

Rješenje.
Promotrimo brojeve koji se nalaze u istom retku kao 0. Ti brojevi su manji ili jednaki
2, te se broj 2 pojavljuje najviše tri puta. Zaključujemo da je zbroj brojeva u retku u
kojem se nalazi 0 manji ili jednak 3 · 2 + 1 = 7. Analogno zaključujemo da je zbroj
brojeva koji se pojavljuju u istom stupcu kao 0 manji ili jednak 7. 2 boda
Ostatak tablice sastoji se od 4 retka i 4 stupca. Budući da je 2 najveći broj koji može
biti u istom retku ili stupcu s 0, zaključujemo da je 3 najveći broj koji se može nalaziti
u ostatku tablice (jer se broj 4 ne nalazi u tablici). 2 boda
U tom ostatku tablice, broj 3 se u svakom retku pojavljuje najviše tri puta, pa se
ukupno pojavljuje najviše dvanaest puta, a ostala četiri broja su manja ili jednaka 2.
Dakle, u tom dijelu tablice je zbroj brojeva najviše 12 · 3 + 4 · 2 = 44. 3 boda
Taj zbroj možemo postići tako da u tom dijelu tablice stavimo broj 2 na četiri polja
koja su u različitim retcima i stupcima, te broj 3 na preostalih dvanaest polja. 2 boda
Dakle, ukupan zbroj brojeva u tablici je najviše 2 · 7 + 44 = 58. 1 bod
Primjer tablice opisane gornjim postupkom

2 3 3 3 2
2 3 3 2 3
2 3 2 3 3
1 2 3 3 3
0 1 2 2 2

Napomena: Primjer optimalne tablice bez objašnjenja zašto je takva tablica optimalna
nosi 3 boda, a odgovor da je najveći mogući zbroj brojeva 58 nosi 1 bod.
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ŠKOLSKO NATJECANJE IZ MATEMATIKE
2. razred – srednja škola – A varijanta

26. siječnja 2026.

AKO UČENIK IMA DRUKČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO
TREBA I TAJ POSTUPAK BODOVATI I OCIJENITI NA ODGOVARAJUĆI NAČIN.

Zadatak A-2.1.
Odredi sve realne brojeve 𝑥 za koje vrijedi

3 − 2
√

𝑥 + 6√
𝑥 − 2 − 2

⩾
√

𝑥 + 6.

Rješenje.
Da bi izraz bio dobro definiran, mora vrijediti 𝑥 − 2 ⩾ 0, 𝑥 + 6 ⩾ 0 i

√
𝑥 − 2 ̸= 2.

Zaključujemo da sva rješenja 𝑥 zadovoljavaju 𝑥 ⩾ 2 i 𝑥 ̸= 6. 1 bod
Oduzimanjem

√
𝑥 + 6 s obje strane nejednakosti i svođenjem na zajednički nazivnik

dobivamo
3 − 2

√
𝑥 + 6 −

√
𝑥 − 2

√
𝑥 + 6 + 2

√
𝑥 + 6√

𝑥 − 2 − 2
⩾ 0,

odnosno
3 −

√
(𝑥 − 2)(𝑥 + 6)√
𝑥 − 2 − 2

⩾ 0. 1 bod

Promotrimo prvo slučaj kada je
√

𝑥 − 2 − 2 < 0, odnosno 𝑥 < 6.
Tada je nužno 3 −

√
(𝑥 − 2)(𝑥 + 6) ⩽ 0, 1 bododnosno 3 ⩽

√
(𝑥 − 2)(𝑥 + 6),

što daje kvadratnu nejednadžbu 0 ⩽ 𝑥2 + 4𝑥 − 21 = (𝑥 + 7)(𝑥 − 3), čije je rješenje
𝑥 ⩽ −7 ili 𝑥 ⩾ 3. Budući da je 2 ⩽ 𝑥 < 6, zaključujemo da je 3 ⩽ 𝑥 < 6. 1 bod

U slučaju kada je
√

𝑥 − 2 − 2 > 0, 1 bododnosno 𝑥 > 6, nužno je 3 −
√

(𝑥 − 2)(𝑥 + 6) ⩾ 0.
Analogno prethodnom slučaju, rješavanjem ove nejednadžbe dobivamo −7 ⩽ 𝑥 ⩽ 3,
što nije kompatibilno s uvjetom 𝑥 > 6, odnosno zaključujemo da u ovom slučaju nema
rješenja. 1 bod
Konačno, skup rješenja je [3, 6⟩.

Zadatak A-2.2.
Grafovi funkcija 𝑓 : R → R, 𝑓(𝑥) = −𝑥2 +9𝑥−20 i 𝑔 : R → R, 𝑔(𝑥) = 𝑥+3 nacrtani su
u koordinatnoj ravnini. Odredi najveću moguću površinu pravokutnog trokuta 𝐴𝐵𝐶 s
pravim kutom u vrhu 𝐶 smještenog tako da su mu vrhovi 𝐴 i 𝐶 na osi apscisa, vrh 𝐴
pripada grafu funkcije 𝑓 , a vrh 𝐵 grafu funkcije 𝑔 i pritom je apscisa točke 𝐵 manja
od apscise točke 𝐴, a njena ordinata veća od ordinate točke 𝐴.
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Prvo rješenje.

y

x0
A

B

C

Faktorizirajući 𝑓(𝑥) = −(𝑥 − 5)(𝑥 − 4), vidimo da je 𝐴 = (4, 0) ili 𝐴 = (5, 0). 1 bod
U slučaju kada je 𝐴 = (4, 0), postoji 𝑡 ∈ ⟨−3, 4⟩ takav da je 𝐶 = (𝑡, 0) i 𝐵 = (𝑡, 𝑡 + 3). 1 bod
U tom slučaju je površina jednaka

1
2(𝑡 + 3)(4 − 𝑡),

i postiže maksimalnu vrijednost 6.125 kada je 𝑡 = 0.5. 1 bod
U slučaju kada je 𝐴 = (5, 0), postoji 𝑡 ∈ ⟨−3, 5⟩ takav da je 𝐶 = (𝑡, 0) i 𝐵 = (𝑡, 𝑡 + 3). 1 bod
U tom slučaju je površina jednaka

1
2(𝑡 + 3)(5 − 𝑡),

i postiže maksimalnu vrijednost 8 kada je 𝑡 = 1. 2 boda
Uspoređujući ova dva slučaja vidimo da je maksimalna površina jednaka 8.

Drugo rješenje.
Kao u prvom rješenju zaključujemo da je 𝐴 = (4, 0) ili 𝐴 = (5, 0). 1 bod
Kada bi se maksimalna površina postizala za 𝐴 = (4, 0), 𝐶 = (𝑡, 0) i 𝐵 = (𝑡, 𝑡+3), gdje
je 𝑡 ∈ ⟨−3, 4⟩. Tada bi trokut 𝐴′𝐵𝐶, gdje je 𝐴′ = (5, 0), također zadovoljavao uvjete
zadatka, no imao strogo veću površinu od trokuta 𝐴𝐵𝐶 jer je |𝐴′𝐶| > |𝐴𝐶|. Stoga je
dovoljno promatrati slučaj kada je 𝐴 = (5, 0). 2 boda
Tretiranje slučaja 𝐴 = (5, 0) kao u prvom rješenju. 3 boda
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Zadatak A-2.3.
Zadan je pravokutan trokut opsega 60 čija je visina na hipotenuzu duljine 12. Odredi
duljine stranica tog trokuta.

Rješenje.
Neka su 𝑎 i 𝑏 duljine kateta trokuta i 𝑐 duljina hipotenuze zadanog trokuta. Površinu
trokuta možemo izraziti na dva načina

𝑎𝑏

2 = 𝑃 = 12𝑐

2 ,

iz čega slijedi
𝑎𝑏 = 12𝑐. 1 bod

Iz uvjeta zadatka za opseg trokuta slijedi

𝑎 + 𝑏 = 60 − 𝑐.

Kvadriranjem dobivamo
𝑎2 + 𝑏2 + 2𝑎𝑏 = (60 − 𝑐)2. 1 bod

Korištenjem Pitagorinog poučka 𝑎2 + 𝑏2 = 𝑐2 i uvjeta 𝑎𝑏 = 12𝑐 dobivamo

𝑐2 + 24𝑐 = (60 − 𝑐)2. 1 bod

Rješavanjem ove jednadžbe dobijemo 𝑐 = 25. 1 bod
Sada je 𝑎 + 𝑏 = 60 − 𝑐 = 35 i 𝑎𝑏 = 12𝑐 = 300. Iz toga dobivamo kvadratnu jednadžbu

𝑏(35 − 𝑏) = 300.

Rješenja te jednadžbe su 𝑏 = 15 i 𝑏 = 20. Ako je 𝑏 = 15, onda je 𝑎 = 20. Ako je 𝑏 = 20,
onda je 𝑎 = 15. U oba slučaja, duljine stranica trokuta su 15, 20, 25. 1 bod

Zadatak A-2.4.
Odredi sve realne brojeve 𝑟 za koje su sva rješenja jednadžbe 𝑥2 − 19𝑥 + 𝑟 = 0 kubovi
cijelih brojeva.

Rješenje.
Neka su 𝑥1 = 𝑎3 i 𝑥2 = 𝑏3 rješenja dane kvadratne jednadžbe, pri čemu su 𝑎 i 𝑏 cijeli
brojevi. Korištenjem Vieteovih formula slijedi

𝑎3 + 𝑏3 = 19,

𝑎3𝑏3 = 𝑟.

´
1 bod

Faktorizacijom prve jednakosti dobivamo

𝑎3 + 𝑏3 = (𝑎 + 𝑏)
(
𝑎2 + 𝑏2 − 𝑎𝑏

)
= 19.

Slijedi da je 𝑎 + 𝑏 djelitelj od 19, pa je 𝑎 + 𝑏 jednak 1, −1, 19 ili −19. 1 bod
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Primijetimo da je 𝑎2 + 𝑏2 − 𝑎𝑏 = 𝑎2 + 𝑏2 + (𝑎 − 𝑏)2

2 ⩾ 0, pa zaključujemo da je 𝑎 + 1
jednak 1 ili 19. 1 bodPrvi slučaj. Ako je 𝑎 + 𝑏 = 1, onda je 𝑎2 + 𝑏2 − 𝑎𝑏 = 19. Uvrštavanjem
𝑏 = 1 − 𝑎 dobivamo

𝑎2 + (1 − 𝑎)2 − 𝑎(1 − 𝑎) = 19.

Iz toga dobivamo kvadratnu jednadžbu

𝑎2 − 𝑎 − 6 = 0,

čija su rješenja 𝑎 = −2 i 𝑎 = 3. Ako je 𝑎 = −2, onda je 𝑏 = 1−𝑎 = 3 i 𝑟 = 𝑎3𝑏3 = −216.
Ako je 𝑎 = 3, onda je 𝑏 = 1 − 𝑎 = −2 i ponovno slijedi 𝑟 = 𝑎3𝑏3 = −216. 2 boda
Drugi slučaj. Ako je 𝑎 + 𝑏 = 19, onda je 𝑎2 + 𝑏2 − 𝑎𝑏 = 1. Uvrštavanjem 𝑏 = 19 − 𝑎
dobivamo

𝑎2 + (19 − 𝑎)2 − 𝑎(19 − 𝑎) = 1.

Iz toga dobivamo kvadratnu jednadžbu

𝑎2 − 19𝑎 + 120 = 0

koja nema realna rješenja. Zaključujemo da ovaj slučaj nije moguć. 1 bod
Dakle, jedini mogući slučaj je 𝑎 + 𝑏 = 1. U tom slučaju je 𝑟 = −216 pa zaključujemo
da je to jedini realan broj koji zadovoljava uvjet zadatka.

Zadatak A-2.5.
U svako polje pravokutne tablice upisan je po jedan realan broj tako da zbroj brojeva
u svakom retku tablice iznosi 1, a zbroj brojeva u svakom stupcu tablice iznosi 2.

(a) Može li tablica imati točno 200 polja?
(b) Može li tablica imati točno 2000 polja?

Rješenje.
Označimo sa 𝑟 broj redaka, a sa 𝑠 broj stupaca tablice. Broj polja u tablici jednak je
𝑟 · 𝑠. Kako je zbroj brojeva u svakom retku jednak 1, zaključujemo da je ukupan zbroj
brojeva u tablici jednak 𝑟. Slično, kako je zbroj brojeva u svakom stupcu jednak 2,
zaključujemo da je ukupan zbroj brojeva u tablici jednak 2𝑠. Dakle, vrijedi 𝑟 = 2𝑠. 2 boda
Slijedi da je broj polja u tablici jednak 2𝑠2. 1 bod

(a) Ako tablica ima 200 polja, onda je 2𝑠2 = 200 i slijedi 𝑠 = 10, pa tablica treba
imati 10 stupaca i 20 redaka.
Promotrimo tablicu dimenzija 20 × 10 kojoj je u svako polje upisan broj 1

10 1 bod.
Zbroj brojeva u svakom retku je jednak 10 · 1

10 = 1, a zbroj brojeva u svakom
stupcu je jednak 20 · 1

10 = 2. Zaključujemo da postoji tražena tablica s točno 200
polja. 1 bod

(b) Ako tablica ima 2000 polja, onda je 2𝑠2 = 2000 i slijedi 𝑠 = 10
√

10, što je nemoguće
jer 𝑠 treba biti prirodni broj. Zaključujemo da ne postoji tražena tablica s točno
2000 polja. 1 bod
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Zadatak A-2.6.
Neka je 𝐴𝐵𝐶𝐷 konveksan četverokut takav da je |𝐴𝐵| = 4, |𝐵𝐶| = 7, |𝐴𝐷| = 5,
|∢𝐶𝐵𝐴| = 90∘, te su kutovi ∢𝐴𝐷𝐶 i ∢𝐷𝐶𝐵 šiljasti i međusobno sukladni. Odredi
duljinu dužine 𝐶𝐷.

Prvo rješenje.

4

x− 5 x− 7

5

7

A B

C

D

S

N

Neka je točka 𝑆 presjek pravaca 𝐴𝐷 i 𝐵𝐶.
Iz uvjeta zadatka imamo da je |∢𝐶𝐷𝑆| = |∢𝑆𝐶𝐷| iz čega slijedi da je trokut 𝐷𝐶𝑆
jednakokračan, tj. |𝑆𝐶| = |𝑆𝐷|. 2 boda
Označimo s 𝑥 = |𝑆𝐶| = |𝑆𝐷|. Tada je

|𝑆𝐴| = |𝑆𝐷| − |𝐴𝐷| = 𝑥 − 5,

|𝑆𝐵| = |𝑆𝐶| − |𝐵𝐶| = 𝑥 − 7. 1 bod

Primjenom Pitagorinog poučka na trokut 𝐴𝐵𝑆 redom imamo

42 + (𝑥 − 7)2 = (𝑥 − 5)2

𝑥2 − 14𝑥 + 65 = 𝑥2 − 10𝑥 + 25
4𝑥 = 40,

𝑥 = 10. 1 bod

Neka je 𝑁 nožište okomice iz točke 𝐷 na pravac 𝐵𝐶.
Uočimo da su trokuti 𝐷𝑁𝑆 i 𝐴𝐵𝑆 slični prema K–K poučku o sličnosti trokuta jer su
pravokutni i imaju zajednički kut u vrhu 𝑆. 2 boda
Iz gornje sličnosti redom računamo

|𝑆𝑁 |
|𝑆𝐵|

= |𝑆𝐷|
|𝑆𝐴|

= 2,
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iz čega slijedi da je |𝑆𝑁 | = 2|𝑆𝐵| = 6. 1 bod
Analogno je |𝐷𝑁 | = 2|𝐴𝐵| = 8. 1 bod
Konačno, primjenom Pitagorinog poučka na trokutu 𝐷𝐶𝑁 možemo izračunati duljinu
dužine 𝐶𝐷.

|𝐶𝐷| =
√

|𝐶𝑁 |2 + |𝐷𝑁 |2 =
√

42 + 82 = 4
√

5. 2 boda

Drugo rješenje.

φ

φ

φ

4

5

7

A
B

C

D
E

F

G

Neka su točke 𝐸 i 𝐹 redom nožišta okomica iz 𝐴 i 𝐵 na pravac 𝐷𝐶 te neka je točka
𝐺 nožište okomice iz 𝐴 na pravac 𝐵𝐹 .
Označimo s 𝜙 = |∢𝐶𝐷𝐴| = |∢𝐵𝐶𝐷|.
Promotrimo pravokutni trokut 𝐹𝐶𝐵. Imamo da je

|∢𝐹𝐵𝐶| = 90∘ − |∢𝐵𝐶𝐹 | = 90∘ − 𝜙.

Nadalje, kako je |∢𝐴𝐵𝐶| = 90∘ slijedi da je

|∢𝐴𝐵𝐺| = 90∘ − |∢𝐹𝐵𝐶| = 𝜙. 1 bod

U pravokutnim trokutima 𝐴𝐺𝐵, 𝐷𝐸𝐴 i 𝐹𝐶𝐵 redom vrijedi

|𝐵𝐺| = 4 cos 𝜙, 1 bod
|𝐺𝐹 | = |𝐴𝐸| = 5 sin 𝜙, 1 bod
|𝐵𝐹 | = 7 sin 𝜙. 1 bod

Duljinu dužine 𝐵𝐹 možemo zapisati kao

|𝐵𝐹 | = |𝐵𝐺| + |𝐺𝐹 |.
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Uvrštavanjem gornjih izraza za duljine |𝐵𝐺|, |𝐺𝐹 | i |𝐵𝐹 | slijedi

7 sin 𝜙 = 4 cos 𝜙 + 5 sin 𝜙,

odnosno nakon sređivanja dobijemo da je

sin 𝜙 = 2 cos 𝜙. 2 boda

Kvadriranjem prethodne jednadžbe i korištenjem sin2 𝜙 = 1 − cos2 𝜙 dobivamo

1 − cos2 𝜙 = 4 cos2 𝜙

cos2 𝜙 = 1
5 .

Kako je 𝜙 < 90∘ slijedi da je cos 𝜙 =
√

5
5 i sin 𝜙 = 2 cos 𝜙 = 2

√
5

5 . 2 boda

U pravokutnim trokutima 𝐴𝐺𝐵, 𝐷𝐸𝐴 i 𝐹𝐶𝐵 redom slijedi

|𝐸𝐹 | = |𝐴𝐺| = 4 sin 𝜙 = 8
√

5
5 ,

|𝐷𝐸| = 5 cos 𝜙 = 5
√

5
5 ,

|𝐹𝐶| = 7 cos 𝜙 = 7
√

5
5 . 1 bod

Konačno možemo izračunati duljinu dužine 𝐶𝐷.

|𝐶𝐷| = |𝐷𝐸| + |𝐴𝐺| + |𝐹𝐶| = 5
√

5
5 + 8

√
5

5 + 7
√

5
5 = 4

√
5. 1 bod

Zadatak A-2.7.
Neka su 𝑥 i 𝑦 racionalni brojevi takvi da su 𝑥 + 𝑦 i 𝑥2 + 𝑦2 cijeli brojevi. Jesu li nužno
𝑥 i 𝑦 cijeli brojevi?

Prvo rješenje.
Dokazat ćemo da su 𝑥 i 𝑦 nužno cijeli brojevi. Bez smanjenja općenitosti neka je 𝑥 ⩾ 𝑦.
Primijetimo da je 2𝑥𝑦 = (𝑥 + 𝑦)2 − 𝑥2 − 𝑦2 cijeli broj kao razlika dva cijela broja. 1 bod

Iz toga slijedi da je (𝑥 − 𝑦)2 = 𝑥2 + 𝑦2 − 2𝑥𝑦 također cijeli broj, pa je 𝑥 − 𝑦 =
√

𝑑 za
neki nenegativan cijeli broj 𝑑. 1 bod

Međutim, 𝑥 − 𝑦 je racionalan broj, pa je
√

𝑑 racionalan. Slijedi da je 𝑑 cijeli broj koji
je kvadrat racionalnog broja, pa je 𝑑 kvadrat cijelog broja. Zaključujemo da je 𝑥 − 𝑦
cijeli broj. 2 boda
Posljedično,

2𝑥 = (𝑥 + 𝑦) + (𝑥 − 𝑦) i 2𝑦 = (𝑥 + 𝑦) − (𝑥 − 𝑦)
su cijeli brojevi. 1 bod
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Stoga, postoje cijeli brojevi 𝑎 i 𝑏 takvi da je 𝑥 = 𝑎
2 i 𝑦 = 𝑏

2 . Kako je 𝑥 + 𝑦 = 𝑎+𝑏
2 cijeli

broj, slijedi da su 𝑎 i 𝑏 iste parnosti. 2 boda
Ako su 𝑎 i 𝑏 neparni, onda 2𝑥𝑦 = 2 · 𝑎

2 · 𝑏
2 = 𝑎𝑏

2 nije cijeli broj, što nas dovodi do
kontradikcije. 2 boda
Dakle, 𝑎 i 𝑏 su parni, pa su 𝑥 i 𝑦 cijeli brojevi. 1 bod

Drugo rješenje.
Neka su 𝑚 i 𝑛 cijeli brojevi takvi da je 𝑥+𝑦 = 𝑚 i 𝑥2+𝑦2 = 𝑛. Uvrštavanjem 𝑦 = 𝑚−𝑥
u drugu jednadžbu dobivamo da je 𝑥 racionalno rješenje jednadžbe

2𝑥2 − 2𝑚𝑥 + 𝑚2 − 𝑛 = 0. 2 boda

S druge strane, znamo da su rješenja te jednadžbe brojevi

2𝑚 ±
√

4𝑚2 − 8(𝑚2 − 𝑛)
4 = 𝑚 ±

√
2𝑛 − 𝑚2

2 . 1 bod

Stoga zaključujemo da je
√

2𝑛 − 𝑚2 racionalan broj. 1 bod

Kako je 2𝑛 − 𝑚2 cijeli broj, zaključujemo da je i
√

2𝑛 − 𝑚2 cijeli broj. 2 boda

Parnost broja 2𝑛 − 𝑚2 jednaka je parnosti broja 𝑚, pa je i parnost broja
√

2𝑛 − 𝑚2

jednaka parnosti broja 𝑚. 2 boda

Stoga su brojevi 𝑚 +
√

2𝑛 − 𝑚2 i 𝑚 −
√

2𝑛 − 𝑚2 parni, odnosno 𝑚 +
√

2𝑛 − 𝑚2

2 i
𝑚 −

√
2𝑛 − 𝑚2

2 su cijeli brojevi. Ovime zaključujemo da je 𝑥 cijeli broj, pa je i 𝑦 cijeli
broj. 1 bod
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ŠKOLSKO NATJECANJE IZ MATEMATIKE
3. razred – srednja škola – A varijanta

26. siječnja 2026.

AKO UČENIK IMA DRUKČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO
TREBA I TAJ POSTUPAK BODOVATI I OCIJENITI NA ODGOVARAJUĆI NAČIN.

Zadatak A-3.1.
Odredi sve parove (𝑥, 𝑦) pozitivnih realnih brojeva za koje vrijedi®

𝑦𝑥2−7𝑥+12 = 1
𝑥 + 𝑦 = 6.

Rješenje.
Primijetimo da je 𝑦𝑥2−7𝑥+12 = 1 ako i samo ako je 𝑦 = 1 ili 𝑥2 − 7𝑥 + 12 = 0. 1 bod
U slučaju 𝑦 = 1, dobivamo rješenje (𝑥, 𝑦) = (5, 1). 2 boda
Kvadratna jednadžba 𝑥2 − 7𝑥 + 12 = 0 ima rješenja 𝑥 = 3 i 𝑥 = 4. 2 boda
Odavde dobivamo rješenja

(𝑥, 𝑦) = (3, 3) i (𝑥, 𝑦) = (4, 2). 1 bod

Zadatak A-3.2.
Ako je sin 𝑥 + cos 𝑥 = 1.4, odredi tg2 𝑥 + ctg2 𝑥.

Prvo rješenje.

Uvrštavanjem tg 𝑥 = sin 𝑥

cos 𝑥
i ctg 𝑥 = cos 𝑥

sin 𝑥
dobivamo

tg2 𝑥 + ctg2 𝑥 = sin4 𝑥 + cos4 𝑥

sin2 𝑥 cos2 𝑥
. 1 bod

Kvadriranjem izraza sin2 𝑥 + cos2 𝑥 = 1 dobijemo

sin4 𝑥 + cos4 𝑥 = 1 − 2 sin2 𝑥 cos2 𝑥. 2 boda

Uvrštavanjem u gornju jednakost imamo

tg2 𝑥 + ctg2 𝑥 = 1 − 2 sin2 𝑥 cos2 𝑥

sin2 𝑥 cos2 𝑥
= 1

sin2 𝑥 cos2 𝑥
− 2.

Izračunajmo sada vrijednost izraza sin2 𝑥 cos2 𝑥.
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Kvadriranjem izraza sin 𝑥+cos 𝑥 = 1.4 = 7
5 i uvrštavanjem sin2 𝑥+cos2 𝑥 = 1 dobivamo

da je
sin 𝑥 cos 𝑥 = 1.42 − 1

2 = 12
25 , 2 boda

odakle slijedi da je
sin2 𝑥 cos2 𝑥 = 144

625 .

Ovime konačno dobivamo da je

tg2 𝑥 + ctg2 𝑥 = 625
144 − 2 = 337

144 . 1 bod

Drugo rješenje.
Uvrštavanjem cos 𝑥 = 1.4−sin 𝑥 u osnovni trigonometrijski identitet sin2 𝑥+cos2 𝑥 = 1
dobivamo

2 sin2 𝑥 − 2.8 sin 𝑥 + 1.96 = 1. 2 boda

Rješavanjem kvadratne jednadžbe dobivamo da je sin 𝑥 = 0.6 ili sin 𝑥 = 0.8. 2 boda
U slučaju kada je sin 𝑥 = 0.6, koristeći sin 𝑥 + cos 𝑥 = 1.4, dobivamo da je cos 𝑥 = 0.8,
dok u slučaju sin 𝑥 = 0.6 dobivamo cos 𝑥 = 0.8. 1 bod
U oba slučaja vrijedi da je

tg2 𝑥 + ctg2 𝑥 = sin2 𝑥

cos2 𝑥
+ cos2 𝑥

sin2 𝑥
= 9

16 + 16
9 = 337

144 . 1 bod

Zadatak A-3.3.
Lukas je odlučio napraviti snjegovića od tri kugle čiji su polumjeri 30
cm, 26 cm i 18 cm. Dvije veće kugle prerezao je tako da oba presjeka
budu krugovi polumjera 24 cm, te je odbacio manje dijelove, a veće
dijelove stavio jedan na drugi, spajajući ih duž tog kruga. Na kraju je
na vrh položio najmanju kuglu. Kolika je ukupna visina Lukasovog
snjegovića?
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Rješenje.

30

26

18

24
A

S3

S1

S2

Neka je 𝑆1 središte najveće kugle, 𝑆2 sre-
dište srednje kugle, te neka je 𝑆3 središte
kruga duž kojeg su one spojene. Neka je još
𝐴 neka točka na rubu tog kruga. Primje-
nom Pitagorinog poučka na trokut 𝑆1𝑆3𝐴
dobivamo da je

|𝑆1𝑆3| =
√

302 − 242 = 18. 2 boda

Primjenom Pitagorinog poučka na trokut
𝑆2𝑆3𝐴 dobivamo da je

|𝑆2𝑆3| =
√

262 − 242 = 10 2 boda

Dakle, ukupna visina snjegovića je 30+18+
10 + 26 + 2 · 18 = 120 cm. 2 boda

Zadatak A-3.4.
Za realne brojeve 𝑎, 𝑏, 𝑐, 𝑑 veće od 1 vrijedi log𝑏 𝑎 · log𝑑 𝑐 = 1. Odredi vrijednost izraza

𝑎log𝑏 𝑐 · 𝑏log𝑐 𝑑 · 𝑐log𝑑 𝑎 · 𝑑log𝑎 𝑏

𝑎𝑏𝑐𝑑
.

Prvo rješenje.
Iz uvjeta zadatka imamo

1 = log𝑏 𝑎 · log𝑑 𝑐 = log 𝑎

log 𝑏
· log 𝑐

log 𝑑
. 1 bod

Slijedi da je
1 = log𝑎 𝑏 · log𝑐 𝑑 = log𝑑 𝑎 · log𝑏 𝑐 = log𝑎 𝑑 · log𝑐 𝑏. 1 bod

Sada je
𝑎log𝑏 𝑐 = 𝑎log𝑎 𝑏·log𝑏 𝑐·log𝑐 𝑑 = 𝑎log𝑎 𝑏·log𝑏 𝑑 = 𝑎log𝑎 𝑑 = 𝑑. 2 boda

Analogno slijedi i 𝑏log𝑐 𝑑 = 𝑎, 𝑐log𝑑 𝑎 = 𝑏 i 𝑑log𝑎 𝑏 = 𝑐. 1 bod
Konačno, dobivamo da je zadani izraz jednak 1. 1 bod
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Drugo rješenje.
Iz uvjeta zadatka imamo

1 = log𝑏 𝑎 · log𝑑 𝑐 = log 𝑎

log 𝑏
· log 𝑐

log 𝑑
. 1 bod

Neka je 𝑆 = 𝑎log𝑏 𝑐 · 𝑏log𝑐 𝑑 · 𝑐log𝑑 𝑎 · 𝑑log𝑎 𝑏

𝑎𝑏𝑐𝑑
. Sada je

log 𝑆 = log 𝑎 log𝑏 𝑐 + log 𝑏 log𝑐 𝑑 + log 𝑐 log𝑑 𝑎 + log 𝑑 log𝑎 𝑏 − log 𝑎 − log 𝑏 − log 𝑐 − log 𝑑 2 boda

= log 𝑎 · log 𝑐

log 𝑏
+ log 𝑏 · log 𝑑

log 𝑐
+ log 𝑐 · log 𝑎

log 𝑑
+ log 𝑑 · log 𝑏

log 𝑎

− log 𝑎 − log 𝑏 − log 𝑐 − log 𝑑 1 bod
= log 𝑑 + log 𝑎 + log 𝑏 + log 𝑐 − log 𝑎 − log 𝑏 − log 𝑐 − log 𝑑 1 bod
= 0.

Konačno, 𝑆 = 1. 1 bod

Zadatak A-3.5.
Polja pravokutne ploče s 2026 redaka i 100 stupaca obojena su naizmjence crno i bijelo,
kao na šahovskoj ploči. Skakavac koji se nalazi na nekom polju ploče može skočiti na
bilo koje polje iste boje u istom retku, ili bilo koje polje različite bolje u istom stupcu.
Koliko se najviše skakavaca može rasporediti na toj ploči tako da niti jedan skakavac
ne može skočiti na polje na kojem se već nalazi neki drugi skakavac?

Rješenje.

· · ·
· · ·

· · ·
· · ·

··
·

· · ·

··
·

· · ·

S× ×
×

×

×

U svakom retku mogu se nalaziti najviše dva skakavca. Ako bi se u nekom retku
nalazila tri skakavca, dva bi bila u poljima iste boje, stoga bi neki skakavac mogao
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skočiti na polje iste boje na kojem se već nalazi drugi skakavac. Stoga na ploči ne
može biti više od 2 · 2026 skakavaca. 3 boda
Pokažimo da je moguće postići da se na ploči nalazi toliko skakavaca. Označimo retke
redom brojevima od 1 do 2026, te pretpostavimo da se u svim neparnim retcima nalaze
po dva skakavca u prva dva polja, te da se u parnim recima nalaze po dva skakavca u
trećem i četvrtom polju. 3 boda

· · ···
·

· · ·

S S

S S

S S

S S

S S

Dakle, moguće je postaviti 2 · 2026 = 5052 skakavaca na ploču, i to je najviše što ih se
može postaviti.

Zadatak A-3.6.
Odredi sve prirodne brojeve 𝑛 takve da je umnožak prvih 𝑛 prirodnih brojeva djeljiv
zbrojem prvih 𝑛 prirodnih brojeva.

Rješenje.
Označimo sa 𝑛! umnožak prvih 𝑛 prirodnih brojeva.
Ako je 𝑛 ⩾ 3 neparan broj, zbroj prvih 𝑛 prirodnih brojeva je umnožak prirodnih
brojeva 𝑛 i 𝑛 + 1

2 .

Budući da je 𝑛 + 1
2 < 𝑛, slijedi da 1

2(𝑛 + 1) dijeli (𝑛 − 1)!, odnosno 𝑛 · 𝑛 + 1
2 dijeli 𝑛!. 2 boda

Za 𝑛 = 1, 𝑛! = 1 je djeljiv s 𝑛(𝑛 + 1)
2 = 1. 1 bod

Tvrdnja vrijedi za sve neparne prirodne brojeve 𝑛.
Pretpostavimo da je 𝑛 paran broj.

Zbroj prvih 𝑛 prirodnih brojeva je umnožak prirodnih brojeva 𝑛

2 i 𝑛 + 1.

Ako je 𝑛 + 1 složen broj, onda vrijedi 𝑛 + 1 = 𝑝2 za prost broj 𝑝 ⩾ 3 ili 𝑛 + 1 = 𝑎 · 𝑏,
gdje je 1 < 𝑎 < 𝑏 < 𝑛. 2 boda
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Prvi slučaj. Neka je 𝑛 + 1 = 𝑝2 za prost broj 𝑝.
Budući da su brojevi 𝑛 i 𝑝 relativno prosti, brojevi 𝑝, 2𝑝 i 𝑛

2 međusobno su različiti i

manji od 𝑛, pa 𝑝 · 2𝑝 · 𝑛

2 dijeli 𝑛!. Slijedi da 𝑛

2 · 𝑝2 = 𝑛

2 · (𝑛 + 1) dijeli 𝑛!. 2 boda

Drugi slučaj. Neka je 𝑛 + 1 = 𝑎 · 𝑏 za 1 < 𝑎 < 𝑏 < 𝑛.
Budući da su brojevi 𝑛

2 i 𝑛 + 1 relativno prosti, brojevi 𝑎, 𝑏 i 𝑛

2 međusobno su različiti

i manji od 𝑛, pa 𝑛

2 · 𝑎 · 𝑏 dijeli 𝑛!. 2 boda

Treći slučaj. Neka je 𝑛 + 1 = 𝑝 za neki neparan prost broj 𝑝.

Tada 𝑝 dijeli 𝑛(𝑛 + 1)
2 , ali 𝑝 ne dijeli 𝑛!. 1 bod

Rješenje su svi prirodni brojevi koji nisu oblika 𝑝 − 1, gdje je 𝑝 neparan prost broj.

Zadatak A-3.7.
Neka je 𝐼 središte upisane kružnice trokuta 𝐴𝐵𝐶. Ako vrijedi |∢𝐴𝐶𝐵| = 2|∢𝐵𝐴𝐶| i
|𝐴𝐼| = |𝐵𝐶|, odredi kutove trokuta 𝐴𝐵𝐶.

Prvo rješenje.
Označimo 𝛼 = |∢𝐵𝐴𝐶|. Tada je |∢𝐴𝐶𝐵| = 2𝛼 te |∢𝐶𝐵𝐴| = 180∘ − 3𝛼.

α

2α180◦ − 3α

A

I

C

α
2

α

I

A

B C

Primjenom poučka o sinusima na trokut 𝐴𝐵𝐶 dobijemo
|𝐵𝐶|
|𝐶𝐴|

= sin 𝛼

sin(180∘ − 3𝛼) = sin 𝛼

sin 3𝛼
. 2 boda

Primjenom poučka o sinusima na trokut 𝐴𝐼𝐶 dobijemo
|𝐴𝐼|
|𝐶𝐴|

= sin∢𝐴𝐶𝐼

sin∢𝐶𝐼𝐴
= sin 𝛼

sin(180∘ − 3𝛼
2 ) = sin 𝛼

sin 3𝛼
2

. 2 boda
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Budući da je |𝐵𝐶| = |𝐴𝐼|, izjednačavanjem prethodne dvije jednakosti dobijemo
sin 3𝛼 = sin 3𝛼

2 . 2 boda

S druge strane, sin 3𝛼 = 2 sin 3𝛼

2 cos 3𝛼

2 , pa zaključujemo da je cos 3𝛼

2 = 1
2. 2 boda

Slijedi da je 3𝛼

2 = 60∘, odnosno 𝛼 = 40∘. 1 bod

Konačno, |∢𝐴𝐶𝐵| = 80∘ i |∢𝐶𝐵𝐴| = 60∘. 1 bod

Drugo rješenje.
Označimo 𝛼 = |∢𝐵𝐴𝐶| i uvedimo točku 𝐷 takvu da je 𝐴𝐵𝐶𝐷 paralelogram.
Sada vidimo da je |∢𝐶𝐴𝐷| = |∢𝐴𝐶𝐵| = 2𝛼 i |∢𝐷𝐶𝐴| = |∢𝐵𝐴𝐶| = 𝛼.
Uočimo da je |∢𝐷𝐶𝐴| = 𝛼 = |∢𝐴𝐶𝐼|, odnosno da je 𝐴 na simetrali kuta |∢𝐷𝐶𝐼|. 2 boda
Točka 𝐴 je na simetrali dužine 𝐷𝐼 jer je |𝐴𝐷| = |𝐵𝐶| = |𝐴𝐼|. 2 boda
Kako je točka 𝐴 na simetrali kuta ∢𝐷𝐶𝐼 i simetrali dužine 𝐷𝐼, zaklučujemo da je 𝐴
na opisanoj kružnici trokuta 𝐶𝐷𝐼. 3 boda

I

A

B C

D

Iz tetivnosti četverokuta 𝐶𝐷𝐴𝐼 imamo 180∘ = |∢𝐼𝐴𝐷| + |∢𝐷𝐶𝐼| = 4.5𝛼, odnosno
𝛼 = 40∘. 2 boda
Konačno, |∢𝐴𝐶𝐵| = 80∘ i |∢𝐶𝐵𝐴| = 60∘. 1 bod

Napomena: Nije potrebno dokazivati tvrdnju da se simetrala kuta i simetrala nasu-
protne stranice trokuta sijeku na njegovoj opisanoj kružnici.
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ŠKOLSKO NATJECANJE IZ MATEMATIKE
4. razred – srednja škola – A varijanta

26. siječnja 2026.

AKO UČENIK IMA DRUKČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO
TREBA I TAJ POSTUPAK BODOVATI I OCIJENITI NA ODGOVARAJUĆI NAČIN.

Zadatak A-4.1.
Dokaži da je za svaki prirodan broj 𝑛 broj

(2 +
√

2)𝑛 − (2 −
√

2)𝑛

√
2

također prirodan.

Prvo rješenje.
Po binomnom poučku vrijedi

(2 +
√

2)𝑛 = 2𝑛 +
Ç

𝑛

1

å
· 2𝑛−1 ·

√
2 +
Ç

𝑛

2

å
· 2𝑛−2 · 2 + . . . + (

√
2)𝑛, 2 boda

(2 −
√

2)𝑛 = 2𝑛 −
Ç

𝑛

1

å
· 2𝑛−1 ·

√
2 +
Ç

𝑛

2

å
· 2𝑛−2 · 2 − . . . + (−1)𝑛 · (

√
2)𝑛. 2 boda

Stoga je
(2 +

√
2)𝑛 − (2 −

√
2)𝑛

√
2

= 2 ·
ÇÇ

𝑛

1

å
· 2𝑛−1 +

Ç
𝑛

3

å
· 2𝑛−2 +

Ç
𝑛

5

å
· 2𝑛−3 + . . .

å
,

što je prirodan broj. 2 boda

Drugo rješenje.
Uvedimo oznake 𝑎𝑛 = (2 +

√
2)𝑛, 𝑏𝑛 = (2 −

√
2)𝑛. Matematičkom indukcijom dokazat

ćemo da su brojevi 𝑎𝑛 + 𝑏𝑛 i 𝑎𝑛 − 𝑏𝑛√
2

prirodni za svaki prirodni broj 𝑛. 1 bod

Baza indukcije 𝑛 = 1 vrijedi jer je 𝑎1 + 𝑏1 = 4 i 𝑎1 − 𝑏1√
2

= 2. 1 bod

Pretpostavimo da tvrdnja vrijedi za neki prirodni broj 𝑛. Tada je

𝑎𝑛+1 + 𝑏𝑛+1 = (2 +
√

2) · 𝑎𝑛 + (2 −
√

2) · 𝑏𝑛 = 2(𝑎𝑛 + 𝑏𝑛) + 2 · 𝑎𝑛 − 𝑏𝑛√
2

što je prirodan broj po pretpostavci indukcije. 2 boda
Slično je

𝑎𝑛+1 − 𝑏𝑛+1√
2

= (2 +
√

2) · 𝑎𝑛 − (2 −
√

2) · 𝑏𝑛√
2

= 2 · 𝑎𝑛 − 𝑏𝑛√
2

+ (𝑎𝑛 + 𝑏𝑛)

također prirodan broj po pretpostavci indukcije. Time je tvrdnja dokazana. 2 boda
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Treće rješenje.
Neka je 𝑎 = 2 +

√
2, 𝑏 = 2 −

√
2. Primijetimo prvo da vrijedi 𝑎 + 𝑏 = 4, 𝑎𝑏 = 2. 1 bod

Pronađimo rekurzivnu relaciju za broj 𝑐𝑛 := 𝑎𝑛 − 𝑏𝑛

√
2

. Budući da je

(𝑎𝑛 − 𝑏𝑛)(𝑎 + 𝑏) = 𝑎𝑛+1 − 𝑏𝑛+1 + 𝑎𝑏(𝑎𝑛−1 − 𝑏𝑛−1), 2 boda

dobivamo
𝑎𝑛+1 − 𝑏𝑛+1

√
2

= 2𝑎𝑛 − 𝑏𝑛

√
2

+ 𝑎𝑛−1 − 𝑏𝑛−1
√

2
,

odnosno
𝑐𝑛+1 = 2𝑐𝑛 + 𝑐𝑛−1 1 bod

za svaki prirodni broj 𝑛.

Kako je 𝑐0 = 𝑎0 − 𝑏0
√

2
= 0 i 𝑐1 = 𝑎 − 𝑏√

2
= 2, iz gornje relacije induktivno slijedi da je

broj 𝑐𝑛 = 𝑎𝑛 − 𝑏𝑛

√
2

prirodan za svaki prirodni broj 𝑛. 2 boda

Zadatak A-4.2.
Mjera šiljastog kuta jednakokračnog trapeza iznosi 75∘, a duljine osnovica odnose se
kao 2 : 1. Ako je duljina kraka tog trapeza 5, kolika mu je površina?

Prvo rješenje.
Neka je 𝑎 = |𝐶𝐷| i označimo duljinu visinu trapeza s ℎ.

Površina trapeza je jednaka (𝑎 + 2𝑎)ℎ
2 = 3𝑎ℎ

2 . 1 bod

Nacrtajmo visinu iz vrha 𝐷 na 𝐴𝐵 i nožište označimo s 𝑁 .

5

a

h

a
2

75◦
A B

CD

N
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U pravokutnom trokutu 𝐴𝑁𝐷 imamo kutove ∢𝐷𝐴𝑁 = 75∘ i ∢𝐴𝐷𝑁 = 15∘, te je
|𝐴𝑁 | = 𝑎

2 i |𝐷𝑁 | = ℎ. Slijedi da je 𝑎 = 10 sin 15∘ i ℎ = 5 cos 15∘. 1 bod

Prema adicijskim formulama vrijedi

sin 15∘ = sin 45∘ cos 30∘ − cos 45∘ sin 30∘ =
√

6 −
√

2
4 , 1 bod

cos 15∘ = cos 45∘ cos 30∘ + sin 45∘ sin 30∘ =
√

6 +
√

2
4 . 1 bod

Površina trapeza je stoga jednaka 3𝑎ℎ

2 = 75
4 . 2 boda

Napomena: Posljednja 4 boda moguće je ostvariti i na sljedeći način.

Vrijedi 𝑎·ℎ = 10 sin 15∘ ·5 cos 15∘ = 25 sin 30∘, što nosi 2 boda. Budući da je sin 30∘ = 1
2,

što nosi 1 bod, slijedi da je površina trapeza 75
4 , što nosi također 1 bod.

Drugo rješenje.
Neka je 𝐴𝐵𝐶𝐷 trapez takav da je osnovica 𝐴𝐵 dvostruko duža od osnovice 𝐶𝐷.
Također, neka je 𝐸 polovište osnovice 𝐴𝐵. Tada su trokuti 𝐴𝐸𝐷, 𝐶𝐸𝐷 i 𝐸𝐵𝐶
jednakokračni i sukladni. 1 bod

5

75◦
A B

CD

EF

Izračunajmo površinu jednakokračnog trokuta 𝐴𝐸𝐷 s kutovima 75∘, 75∘, 30∘ i krakom
duljine 5. Neka je 𝐹 polovište osnovice 𝐴𝐸. Tada je 𝐷𝐹 visina trokuta i vrijedi

|𝐷𝐹 | = |𝐴𝐷| · cos 15∘, |𝐴𝐹 | = |𝐸𝐹 | = |𝐴𝐷| · sin 15∘. 1 bod

Stoga površina trokuta 𝐴𝐸𝐷 iznosi |𝐴𝐹 | · |𝐷𝐹 | = 5 sin 15∘ · 5 cos 15∘ = 25
2 sin 30∘. 2 boda

Budući da je sin 30∘ = 1
2, površina trokuta 𝐴𝐸𝐷 iznosi 25

4 , 1 bod

pa je površina trapeza jednaka 75
4 . 1 bod
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Treće rješenje.
Kao u prvom rješenju zaključujemo da je potrebno izračunati površinu trokuta 1 bod𝐴𝐸𝐷.

5

15◦
60◦

75◦

30◦

A B

CD

E

G

Nacrtajmo visinu iz 𝐴 na 𝐷𝐸 s nožištem 𝐺. Tada je |𝐴𝐺| = |𝐴𝐷| · sin 30∘, 2 boda
pa je površina trokuta 𝐴𝐸𝐷 jednaka

|𝐴𝐺| · |𝐷𝐸|
2 = 5 · 5 sin 30∘

2 = 25
4 . 2 boda

Stoga je površina trapeza jednaka 75
4 1 bod.

Napomena: Površinu trapeza moguće je odrediti i računanjem površine trokuta 𝐴𝐵𝑇 ,
gdje je 𝑇 presjek pravaca 𝐴𝐷 i 𝐵𝐶. Računanje površine trokuta 𝐴𝐵𝑇 vrijedi 4 boda.

Zadatak A-4.3.
Neka je (𝑎𝑛) niz pozitivnih realnih brojeva takav da je 𝑎1 = 1 i 𝑎2

𝑛+1 + 𝑎𝑛+1 = 𝑎𝑛 za
sve 𝑛 ∈ N. Dokaži da je 𝑎𝑛 ⩾ 1

𝑛
za sve 𝑛 ∈ N.

Prvo rješenje.
Tvrdnju ćemo dokazati matematičkom indukcijom.
Baza 𝑛 = 1 očito vrijedi jer je 𝑎1 = 1. 1 bod
Pretpostavimo da tvrdnja vrijedi za neki prirodni broj 𝑛.

Ako je 0 < 𝑎𝑛+1 <
1

𝑛 + 1, tada je 𝑎𝑛 = 𝑎2
𝑛+1 + 𝑎𝑛+1 <

1
(𝑛 + 1)2 + 1

𝑛 + 1 = 𝑛 + 2
(𝑛 + 1)2 . 2 boda

Također, vrijedi 𝑛 + 2
(𝑛 + 1)2 <

1
𝑛

jer je (𝑛 + 1)2 = 𝑛(𝑛 + 2) + 1 > 𝑛(𝑛 + 2). 2 boda

Dobili smo kontradikciju, pa mora vrijediti 𝑎𝑛+1 ⩾
1

𝑛 + 1, čime je korak indukcije
dokazan. 1 bod
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Drugo rješenje.
Tvrdnju ćemo dokazati matematičkom indukcijom.
Baza 𝑛 = 1 očito vrijedi jer je 𝑎1 = 1. 1 bod
Pretpostavimo da tvrdnja vrijedi za neki prirodni broj 𝑛.

Vrijedi da je 𝑎𝑛+1 = −1 ±
√

1 + 4𝑎𝑛

2 .

Kako su svi članovi niza pozitivni, mora vrijediti 𝑎𝑛+1 = −1 +
√

1 + 4𝑎𝑛

2 . 1 bod

Kako je 𝑎𝑛 ⩾
1
𝑛

po pretpostavci indukcije, dobivamo da je 𝑎𝑛+1 ⩾

»
1 + 4

𝑛
− 1

2 . 1 bod

Pokažimo da je

»
1 + 4

𝑛
− 1

2 ⩾
1

𝑛 + 1.

Ta nejednakost je, nakon sređivanja i kvadriranja, ekvivalentna s tvrdnjom

1 + 4
𝑛
⩾
Å

1 + 2
𝑛 + 1

ã2
.

Ta tvrdnja vrijedi jer jeÅ
1 + 2

𝑛 + 1

ã2
= 1 + 4

𝑛 + 1 + 4
(𝑛 + 1)2 = 1 + 4(𝑛 + 2)

(𝑛 + 1)2 < 1 + 4
𝑛

. 2 boda

Sada vidimo da je 𝑎𝑛+1 ⩾

»
1 + 4

𝑛
− 1

2 ⩾
1

𝑛 + 1, čime je dokazan korak indukcije. 1 bod

Zadatak A-4.4.
Vita i Lovro naizmjence bacaju igraću kockicu (na čijim su stranama brojevi od 1 do
6). Svaki od njih zbraja brojeve koje dobije bacanjem kockice. Vita baca prva. Igra
završava Vitinom pobjedom ako njezin zbroj dosegne 5 (tj. bude 5 ili više), a Lovrinom
pobjedom ako njegov zbroj dosegne 4. Pokaži da je vjerojatnost da Vita pobijedi veća
od 0.5.

Rješenje.
Pokažimo da je vjerojatnost da Vita pobijedi u najviše dva bacanja veća od 0.5.
Vita pobjeđuje u prvom bacanju ako dobije 5 ili 6, što se događa s vjerojatnošću 1

3 . 1 bod
U preostala četiri slučaja da bi Vita pobijedila Lovro mora dobiti manje od 4 u svom
prvom bacanju, što se događa s vjerojatnošću 1

2 . 1 bod
Svaki od tih slučajeva se događa s vjerojatnošću 1

6 , ali Vita u svom drugom bacanju
ima različite vjerojatnosti za pobjedu, ovisno o broju koji je dobila u prvom bacanju,
što prikazujemo tablicom.

Prvo bacanje Minimalan broj u drugom bacanju Vjerojatnost
1 4 1/2
2 3 2/3
3 2 5/6
4 1 1

2 boda
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Vjerojatnost Vitine pobjede već u prva dva bacanja iznosi

1
3 + 1

2 · 1
6 ·
Å1

2 + 2
3 + 5

6 + 1
ã

= 7
12 >

1
2 . 2 boda

Zadatak A-4.5.
Odredi znamenke 𝑎, 𝑏, 𝑐 ̸= 0 takve da brojevi 𝑎, 𝑏𝑎 i 𝑐𝑏𝑎 budu uzastopni članovi nekog
geometrijskog niza.

Rješenje.
Zapišimo brojeve pomoću dekadskih jedinica:

𝑏𝑎 = 10𝑏 + 𝑎,

𝑐𝑏𝑎 = 100𝑐 + 10𝑏 + 𝑎.

Prema uvjetu zadatka vrijedi

(10𝑏 + 𝑎)2 = 𝑎(100𝑐 + 10𝑏 + 𝑎), 1 bod

što se sređivanjem svede na
𝑎𝑏 = 10(𝑎𝑐 − 𝑏2).

Odavde slijedi da 10 dijeli 𝑎𝑏 pa je jedna od znamenaka 𝑎 i 𝑏 jednaka 5. 1 bod
Prvi slučaj: 𝑏 = 5.
Budući da je 𝑎𝑏 djeljiv s 10, 𝑎 je paran, odnosno 𝑎 = 2𝑘, 1 ⩽ 𝑘 ⩽ 4. Dobivamo da je
10𝑘 = 10(2𝑘𝑐 − 25), odnosno 25 = 𝑘(2𝑐 − 1). 1 bod
Budući da 𝑘 nije djeljiv s 5, broj 2𝑐 − 1 mora biti djeljiv s 25, ali to nije moguće jer je
0 < 2𝑐 − 1 < 18. Stoga ovaj slučaj nema rješenja. 1 bod
Drugi slučaj: 𝑎 = 5.
Slično kao u prethodnom slučaju zaključujemo da je 𝑏 paran, odnosno da je 𝑏 = 2ℓ,
1 ⩽ ℓ ⩽ 4. Slijedi da je 10ℓ = 10(5𝑐 − 4ℓ2), odnosno ℓ(4ℓ + 1) = 5𝑐. 1 bod
Budući da ℓ nije djeljiv s 5, broj 4ℓ + 1 mora biti djeljiv s 5. Stoga je ℓ = 1, 𝑏 = 2 i
𝑐 = 1. Dakle, jedino rješenje je 𝑎 = 5, 𝑏 = 2, 𝑐 = 1. 1 bod
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Zadatak A-4.6.
Na koliko je načina moguće svako od šest polja u nizu obojati jednom od tri boje
(crvenom, bijelom ili plavom) tako da ne postoje tri uzastopna polja obojena trima
različitim bojama?

Prvo rješenje.
Za 𝑖 ∈ {1, 2, 3, 4} definirajmo skupove

𝐴𝑖 = {bojanja u kojima su polja 𝑖, 𝑖 + 1, 𝑖 + 2 obojana s 3 različite boje.}

Zanima nas koliko elemenata ima skup 𝐴𝑐
1 ∩ 𝐴𝑐

2 ∩ 𝐴𝑐
3 ∩ 𝐴𝑐

4. 1 bod
Ukupan broj svih mogućih bojanja polja u tri boje je 36. Po formuli uključivanja-
isključivanja vrijedi

|𝐴𝑐
1 ∩𝐴𝑐

2 ∩𝐴𝑐
3 ∩𝐴𝑐

4| = 36 −
4∑︁

𝑖=1
|𝐴𝑖|+

∑︁
𝑖<𝑗

|𝐴𝑖 ∩𝐴𝑗|−
∑︁

𝑖<𝑗<𝑘

|𝐴𝑖 ∩𝐴𝑗 ∩𝐴𝑘|+|𝐴1 ∩𝐴2 ∩𝐴3 ∩𝐴4|. 1 bod

Treba izračunati koliko pojedini skup u formuli ima elemenata.
Svaki skup 𝐴𝑖 ima 3 · 2 · 1 · 33 elemenata jer imamo 3 mogućnosti za boju polja 𝑖, 2 za
boju polja 𝑖 + 1 i preostala boja ide na polje 𝑖 + 2. Preostala 3 polja možemo obojati
u bilo koju boju. 1 bod
Za 𝑖 ∈ {1, 2, 3} skupovi 𝐴𝑖 ∩𝐴𝑖+1 imaju po 3 ·2 ·1 ·32 elemenata jer imamo 3 mogućnosti
za boju polja 𝑖, 2 za boju polja 𝑖 + 1 i preostala boja ide na polje 𝑖 + 2. Polja 𝑖, 𝑖 + 3
moraju biti obojana istom bojom, a 1 bodpreostala 2 polja možemo obojati u bilo koju boju.
Skupovi 𝐴1 ∩𝐴3, 𝐴2 ∩𝐴4 imaju po 3 ·2 ·1 ·2 ·3 elemenata jer imamo 3 ·2 ·1 mogućnosti
za boje prva 3 polja, četvrto polje ne smije imati istu boju kao treće polje i time je
boja petog polja jednoznačno određena. Preostalo šesto polje možemo obojati u bilo
koju boju. 1 bod
Skup 𝐴1 ∩ 𝐴4 ima 6 · 6 elemenata jer imamo 6 mogućnosti za boje prva 3 polja i 6
mogućnosti za boje zadnja 3 polja. 1 bod
Skupovi 𝐴1 ∩𝐴2 ∩𝐴3 i 𝐴2 ∩𝐴3 ∩𝐴4 imaju po 6 ·3 elemenata jer imamo 6 mogućnosti za
boje prva 3 polja čime su boje četvrtog i petog polja jednoznačno određene. Preostalo
šesto polje možemo obojati u bilo koju boju. 1 bod
Skupovi 𝐴1 ∩ 𝐴2 ∩ 𝐴4 i 𝐴1 ∩ 𝐴3 ∩ 𝐴4 imaju po 6 · 2 elemenata jer imamo 6 mogućnosti
za boje prva 3 polja čime je boja četvrtog polja jednoznačno određena, a za zadnja 2
polja imamo 2 mogućnosti (kao za skupove 𝐴1 ∩ 𝐴3, 𝐴2 ∩ 𝐴4). 1 bod
Skup 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4 ima 6 elemenata jer polja 𝑖, 𝑖 + 3 moraju biti iste boje za
𝑖 ∈ {1, 2, 3}. 1 bod
Dakle, broj traženih bojanja iznosi

36 − 4 · 6 · 33 + 3 · 6 · 32 + 2 · 6 · 6 + 6 · 6 − 2 · 6 · 3 − 2 · 6 · 2 + 6 = 297. 1 bod
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Drugo rješenje.
Svako bojanje niza s tri boje tako da ne postoje tri uzastopna polja obojena trima
različitim bojama ćemo zvati dobro. Ako su zadnja dva polja iste boje, reći ćemo da je
bojanje tipa 1, a ako su zadnja dva polja različite boje, reći ćemo da je bojanje tipa 2.
Neka je 𝑎𝑛 broj dobrih bojanja 𝑛 polja tipa 1 i 𝑏𝑛 broj dobrih bojanja 𝑛 polja tipa 2.
Zanima nas koliko je 𝑎6 + 𝑏6. 1 bod
Odredimo rekurzivne relacije za 𝑎𝑛 i 𝑏𝑛. Prvo, vrijedi 𝑎𝑛+1 = 𝑎𝑛 + 𝑏𝑛. Naime, kako su
polja 𝑛, 𝑛 + 1 iste boje, svako dobro bojanje 𝑛 + 1 polja dolazi od jedinstvenog dobrog
bojanja 𝑛 polja. 4 boda
Promotrimo sada dobro bojanje 𝑛 + 1 polja tipa 2. Ako su polja 𝑛 − 1, 𝑛 iste boje,
tada polje 𝑛 + 1 može biti obojano u 2 boje. Ako su polja 𝑛 − 1, 𝑛 različite boje, tada
polje 𝑛 + 1 mora biti obojano kao i 𝑛 − 1. Stoga je 𝑏𝑛+1 = 2𝑎𝑛 + 𝑏𝑛. 4 boda
Kako je 𝑎2 = 3 i 𝑏2 = 6, uz ove relacije dobivamo da je 𝑎6 = 123, 𝑏6 = 174. Stoga je
broj dobrih bojanja jednak 𝑎6 + 𝑏6 = 297. 1 bod

Zadatak A-4.7.
Odredi najveću moguću vrijednost realnog dijela kompleksnog broja

(10 + 14𝑖)𝑧 + 8 − 8𝑖

𝑧

ako je 𝑧 kompleksan broj takav da je |𝑧| = 2.

Prvo rješenje.

Primijetimo prvo da je 1
𝑧

= 𝑧

|𝑧|2
= 𝑧

4.

Zapišemo li 𝑧 = 𝑥 + 𝑖𝑦, 𝑥, 𝑦 ∈ R, dobijemo

(10 + 14𝑖)𝑧 + 8 − 8𝑖

𝑧
= (10 + 14𝑖)(𝑥 + 𝑖𝑦) + (2 − 2𝑖)(𝑥 − 𝑖𝑦) 1 bod

= 12𝑥 − 16𝑦 + 𝑖(12𝑥 + 8𝑦).

Stoga je traženi realni dio jednak

12𝑥 − 16𝑦. 1 bod

Kako je |𝑧| = 2, postoji realan broj 𝑡 takav da je 𝑥 = 2 cos(𝑡) i 𝑦 = 2 sin(𝑡). 1 bod

Neka 𝜙 ∈ ⟨0, 𝜋/2⟩ broj takav da je cos(𝜙) = 3
5 . Tada je sin(𝜙) = 4

5.

Sada je

12𝑥 − 16𝑦 =
Å

20 · 3
5 · 2 cos 𝑡 − 20 · 4

5 · 2 sin 𝑡

ã
= 40 (cos 𝜙 · cos 𝑡 − sin 𝜙 · sin 𝑡) = 40 cos(𝜙 + 𝑡) 3 boda

Kako je cos(𝑠) ⩽ 1 za svaki 𝑠 ∈ R, slijedi da je traženi izraz manji ili jednak 40. 2 boda

Za 𝑥 = 6
5 i 𝑦 = −8

5 (odnosno 𝑡 = −𝜙) vidimo da se ova vrijednost zaista i postiže. 2 boda
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Drugo rješenje.
Kao u prvom rješenju želimo odrediti najveću moguću vrijednost izraza 12𝑥 − 16𝑦 uz
uvjet 𝑥2 + 𝑦2 = 4. 2 boda
Koristit ćemo da za sve realne brojeve 𝑎, 𝑏, 𝑥, 𝑦 vrijedi Cauchy-Schwarz nejednakost

(𝑥2 + 𝑦2)(𝑎2 + 𝑏2) ⩾ (𝑎𝑥 + 𝑏𝑦)2

uz jednakost ako i samo ako 𝑎𝑦 = 𝑏𝑥.
Ako stavimo 𝑎 = 12 i 𝑏 = −16, dobivamo

1600 = (𝑥2 + 𝑦2)(122 + 162) ⩾ (12𝑥 − 16𝑦)2

pa je 12𝑥 − 16𝑦 ⩽ 40. 6 bodova

Jednakost se postiže ako i samo ako je 12𝑦 + 16𝑥 = 0, odnosno 𝑦 = −4
3𝑥. Taj uvjet i

uvjet 𝑥2 + 𝑦2 = 4 zadovoljava, na primjer, 𝑥 = 6
5, 𝑦 = −8

5. 2 boda

Napomena: U drugom rješenju nejednakost (𝑥2 + 𝑦2)(𝑎2 + 𝑏2) ⩾ (𝑎𝑥 + 𝑏𝑦)2 se može
dokazati raspisivanjem jer je ekvivalentna s (𝑎𝑦 − 𝑏𝑥)2 ⩾ 0 ili pozivanjem na neku od
poznatih nejednakosti (AG ili Cauchy-Schwarz). Međutim, za potpun broj bodova na
ovome zadatku tu tvrdnju nije nužno dokazivati.
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